Ультразвуковые датчики USS AC81B5-49U-R2000-LZS4, USS AC89P5-49U-R2000-LZS4

Руководство по эксплуатации

По вопросам продаж и поддержки обращайтесь:

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Казахстан +7(727)345-47-04

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

Беларусь +375-257-127-884

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

Узбекистан +998(71)205-18-59

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47

эл.почта: tka@nt-rt.ru || сайт: https://teko.nt-rt.ru/

1. Назначение.

Бесконтактный ультразвуковой выключатель (далее «датчик») предназначен для:

- бесконтактного обнаружения объекта в зоне действия;
- бесконтактного обнаружения объекта в пределах заданного порога;
- бесконтактного определения уровня жидкости;

Датчик применяется в задачах автоматического управления и мониторинга в различных отраслях промышленности. Датчик не является средством измерения.

2. Принцип действия

Датчик оборудован пьезоэлектрическим преобразователем, излучающим зондирующие ультразвуковые импульсы и принимающим отражённое эхо. Процесс излучения-приёма основан на преобразовании электрической энергии в механическую и наоборот. Метод вычисления расстояния, заложенный в программу датчика, носит название "время полёта импульса", т.е. время, измеренное между моментами излучения и приёма отражённого звукового сигнала. Измерив время, датчик вычисляет путь, пройденный ультразвуковым импульсом до поверхности и обратно, используя значение скорости распространения звука в воздухе. Половина этого пути - есть расстояние до отражающей поверхности. В зависимости от установленных режимов работы и порогов переключения датчик формирует выходной сигнал.

3. Технические характеристики

Параметр	USS AC81B5-49U-R2000-LZS4			
Формат, мм	(M30x1,5) x 99			
Частота ультразвуковых импульсов	200 кГц			
«Слепая» зона	030	00 мм		
Зона чувствительности, SR	3002	000 мм		
Диапазон рабочих напряжений питания	1030) B DC		
Коэффициент пульсаций напряжения питания	15	5%		
Собственный ток потребления, не более	40	мА		
Гистерезис	40	MM		
Структура выхода	Push-Pull,	PNP, NPN		
Тип контакта	NO u.	пи NC		
Максимальный ток нагрузки	400 мА			
Падение напряжения при максимальном токе нагрузки, не более	1,5 B			
Максимальная ёмкость нагрузки	0,02	мкФ		
Время готовности датчика после подачи питания, не более	1200 мс			
Категория применения	DC	C13		
Максимальная частота циклов оперирования	5 Гц			
Защита от неправильного подключения питания	Есть			
Защита от короткого замыкания в цепи нагрузки	Есть			
Индикация	Есть			
Диапазон рабочих температур Минус 20 °С+65 °С				
Степень защиты по ГОСТ 14254-2015	IP65			
Материал корпуса	Латунь ЛС59-1	PBT		
Материал гаек	Латунь ЛС59-1 Текаформ			
Рекомендуемый соединитель	CS S19-3, CS S20-3, CS S25, CS S251CS S261			

4. Дополнительная информация

Момент затяжки гаек, не более

- USS AC81B5-49U-R2000-LZS4 - USS AC89P5-49U-R2000-LZS4 20 H•м.

5. Комплектность поставки

 Датчик
 1 шт.

 Гайка M30x1,5
 2 шт.

 Паспорт
 1 шт.

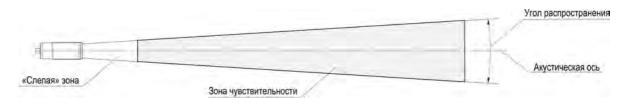
6. Указания мер безопасности

Все подключения к датчику производить при отключенном напряжении питания.

По способу защиты о поражения электрическим током датчик соответствует классу III ГОСТ Р 58698-2019.

7. Указания по установке и эксплуатации

7.1. Элементы управления и индикации


- **7.1.1.** Настройка датчика осуществляется замыканием контакта «Настройка» (второй контакт разъёма) и контакта «-Uпит» (третий контакт разъёма). Для удобства настройки к указанным контактам может быть подключена кнопка (см. схему подключения).
- **7.1.2.** Датчик имеет индикатор «Состояние» (см. габаритный чертеж), работа которого зависит от настроек режимов обнаружения и выходного сигнала (п.7.7).

7.2. Параметры обнаружения объекта

7.2.1. Параметры выключателя указаны при использовании стандартной цели по ГОСТ IEC 60947-5-2-2012 - предмет квадратной формы 100х100 мм и толщиной 1 мм, изготовленный из металла.

Максимальная дальность действия снижается, если объект имеет размеры менее 100х100 мм или неровную поверхность.

- **7.2.2.** Ультразвуковой луч датчика имеет форму конуса. Угол распространения ультразвуковых колебаний составляет 14°±4°. В этом секторе не должно находиться посторонних объектов, способных отражать ультразвуковое излучение. Это может привести к неустойчивой работе датчика.
- **7.2.3.** Обнаруживаемый объект должен располагаться параллельно чувствительной поверхности датчика. Допускается отклонение $\pm 4^{\circ}$, не более. При большем отклонении, максимальная дальность действия датчика уменьшается.
- 7.2.4. Датчик не обнаруживает объекты, находящиеся за пределами зоны чувствительности.

7.2.5. Параметры обнаружения жидкости:

- при установке датчика в резервуар необходимо учитывать угол распространения ультразвуковых колебаний, указанный в 7.2.2;
- акустическая ось преобразователя должна быть перпендикулярна к поверхности жидкости. Допускается отклонение $\pm 4^{\circ}$, не более;
- датчик способен обнаруживать уровень только в пределах зоны чувствительности;
- газовая прослойка, по свойствам отличная от воздуха, между поверхностью жидкости и датчиком может вносить погрешность.

Примечание: находящаяся на измеряемой поверхности пена может сделать ультразвуковое измерение невозможным. Датчик следует располагать в месте, где пенообразование наименьшее.

7.2.6. Датчик оборудован температурной компенсацией расстояния.

7.3. Настройка режимов обнаружения

7.3.1. Датчик имеет четыре режима обнаружения:

- режим определения наличия объекта по порогу переключение выхода датчика по одному заданному порогу;
- режим определения объекта в заданных границах (режим «окна») переключение выхода при обнаружении объекта между двумя заданными порогами;
- режим определения уровня жидкости включение выхода по первому порогу и отключение по второму;
- режим работы с отражателем определение объектов в зоне между датчиком и рефлектором, в этом режиме могут распознаваться слабо отражающие объекты, так же как мелкие объекты или звукопоглощающие материалы.
- **7.3.2.** Переход к настройке осуществляется путём замыкания контакта «Настройка» (второй контакт разъёма) и контакта «-Uпит» (третий контакт разъёма) на 5-10 секунд при этом индикатор «Состояние» мигает жёлтым цветом.
- **7.3.3.** С помощью кратковременного замыкания контакта «Настройка» и «–Uпит» можно переключать режимы работы датчика. Индикатор «Состояние» показывает режим:
- зелёный режим с одним порогом;
- жёлтый режим «окна»;
- красный режим контроля уровня жидкости;
- жёлтый мигающий режим работы с отражателем.
- **7.3.4.** Для подтверждения выбора необходимо замкнуть контакты «Настройка» и «–Uпит» не менее чем на 2 секунды. После выбора режима датчик переходит к настройке порога срабатывания.
- 7.3.5. Дальнейший порядок настройки порога отличается, в зависимости от выбранного режима работы датчика.
- а) Режим определения наличия объекта
- Датчик находится в ожидании установки порога. Индикатор «Состояние» показывает уровень принимаемого (отраженного от объекта) сигнала, пропорционально меняя цвет от красного (при отсутствии сигнала) до зелёного (при хорошем уровне сигнала).
- Для программирования порога установите объект на требуемом расстоянии и замкните контакты «Настройка» и «– Uпит» не менее чем на 2 секунды.
- При плохом сигнале (индикатор «Состояние» светится красным цветом), программирование порога не произойдёт. Проверьте соответствие объекта п. 7.2.

- б) Режим «окна» и режим определения уровня жидкости
- Датчик находится в ожидании установки ближнего порога. Индикатор «Состояние» показывает уровень принимаемого (отраженного от объекта) сигнала, пропорционально меняя цвет от красного (при отсутствии сигнала) до зелёного (при хорошем уровне сигнала).
- Для программирования порога установите объект на требуемом расстоянии и замкните контакты «Настройка» и «-- Uпит» не менее чем на 2 секунды.
- После этого датчик переходит в ожидание установки дальнего порога. Индикатор «Состояние» показывает уровень принимаемого (отраженного от объекта) сигнала. Разность между дальней и ближней границей должна быть не менее 15 мм.
- Для программирования порога установите объект на требуемом расстоянии и замкните контакты «Настройка» и «-- Uпит» не менее чем на 2 секунды.
- При плохом сигнале (индикатор «Состояние» светится красным цветом), программирование порога не произойдёт. Проверьте соответствие объекта п. 7.2.
- в) Режим работы с отражателем
- Датчик находится в ожидании установки порога. Индикатор «Состояние» показывает уровень принимаемого сигнала, пропорционально меняя цвет от красного (при отсутствии сигнала) до зелёного (при хорошем уровне сигнала).
- Для программирования установите рефлектор (любая отражающая ультразвуковое излучение поверхность, соответствующая п.7.2) на требуемом расстоянии и замкните контакты «Настройка» и «–Uпит» не менее чем на 2 секунды.
- При плохом сигнале (индикатор «Состояние» светится красным цветом), программирование порога не произойдёт. Проверьте соответствие объекта п. 7.2.
- **7.3.6.** Если в течение 20 секунд не произошло никаких действий, датчик возвращается в основной режим работы без сохранения любых изменений.

7.4. Настройка режимов выходного сигнала

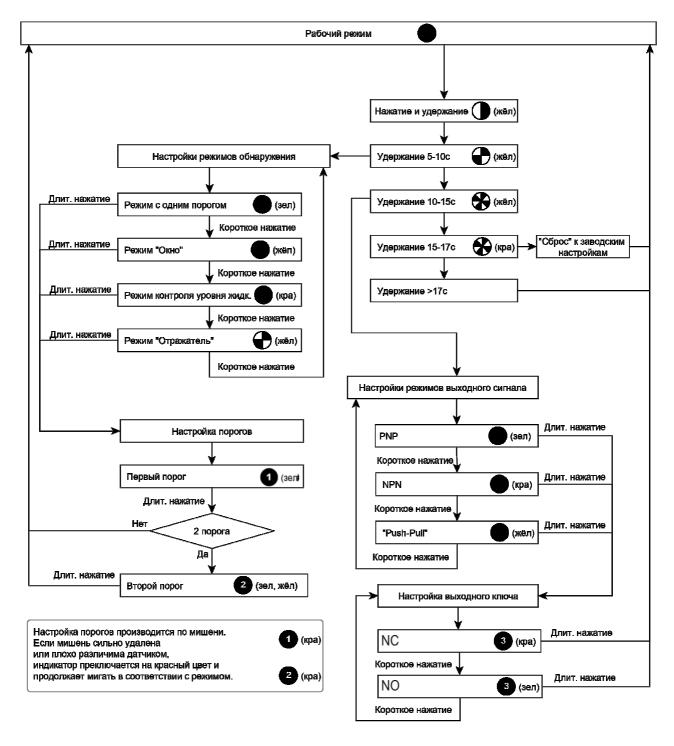
- **7.4.1.** Датчик имеет три варианта структуры выхода: Push-Pull, NPN, PNP.
- **7.4.2.** Переход к настройке осуществляется путём замыкания контакта «Настройка» (второй контакт разъёма) и контакта «—Uпит» (третий контакт разъёма) на 10-15 секунд при этом индикатор «Состояние» светится жёлтым пветом

С помощью кратковременного замыкания контакта «Настройка» и «-Uпит» можно переключать режимы выходного сигнала. Индикатор «Состояние» показывает режим:

- зелёный PNP (схема подключения **Выход PNP**);
- красный NPN (схема подключения **Выход NPN**);
- жёлтый Push-Pull (схема подключения Выход Push-Pull).
- 7.4.3. Для подтверждения выбора необходимо замкнуть контакты «Настройка» и «- Uпит» не менее чем на 2 секунды.
- **7.4.4.** После выбора режима датчик переходит к программированию состояния выходного ключа при отсутствии мишени. Индикатор «Состояние» показывает выбранный режим:
- красный нормально замкнутый (NC);
- зелёный нормально разомкнутый (NO).
- **7.4.5.** Для осуществления выбора необходимо замкнуть контакты «Настройка» и «–Uпит» не менее чем на 2 секунды. После чего датчик переходит в рабочий режим.
- **7.4.6.** Если в течение 20 секунд не произошло никаких действий, датчик возвращается в рабочий режим без сохранения изменений.

7.5. Сброс к заводским настройкам

- 7.5.2. Настройки по умолчанию:
 - режим определения наличия объекта;
 - порог переключения 2000 мм;
 - структура выхода Push-Pull, NO.


7.6. Установка датчика на объекте

- 7.6.1. Закрепить датчик на объекте с учетом допустимых моментов затяжки гаек. Рабочее положение любое.
- 7.6.2. Подключить датчик в соответствии со схемой подключения.
- **7.6.3.** Подать напряжение питания на датчик. Индикатор «Состояние» будет светиться зелёным цветом (при наличии объекта).
- 7.6.4. При первом включении датчик имеет настройки по умолчанию (п.7.5.2).
- 7.6.5. При необходимости изменения режима работы датчика настроить согласно п.7.3.
- 7.6.6. При необходимости изменения порога срабатывания датчика настроить согласно п.7.4.
- 7.6.7. Во время обычной работы датчика контакт «Настройка» должен оставаться не подключенным.
- **7.6.8.** Ниже представлена диаграмма настройки параметров датчика. Для упрощения диаграммы замыкание контактов «Настройка» и «– Uпит» представлено в виде нажатия кнопки, подключенной к указанным цепям (см. схему подключения).

Диаграмма настройки параметров датчика

Состояние трёхцветного индикатора. Цвета: зелёный, жёлтый, красный.

\bigcirc	Выключен		
	Включен		
	Мигает с частотой 2Гц		
lack	Мигает с частотой 4Гц		
4	Мигает с частотой 10Гц		
0	Одиночные импульсы		
2	Двойные импульсы		
3	Тройные импульсы		

7.7. Работа индикатора «Состояние» и выхода датчика.

		
режим датчика	внешнее условие	
один порог	поверхность ближе порога	
"окно"	поверхность между порогами (в "окне")	
контроль уровня жидкости	поверхность ближе ближнего порога (уровень выше максимума)	
"отражатель"	препятствие между датчиком и отражателем	

тип выхода		состояние выхода	цвет индикатора
NPN PNP	NC	разомкнут	
Push- Pull	акт. "0"	низкий	зелёный
NPN PNP	NO	замкнут	
Push- Pull	акт. "1"	высокий	красный

режим датчика	внешнее условие
один порог	поверхность дальше порога
"окно"	поверхность ближе ближнего порога, поверхность дальше дальнего порога (не в "окне")
контроль уровня жидкости	поверхность дальше дальнего порога (уровень ниже минимума)
"отражатель"	нет препятствий между датчиком и отражателем

	тип выхода		гип выхода состояние выхода			
-	NPN	NC				
-	PNP	NC	замкнут	красный		
	Push- Pull	акт. "0"	высокий	красный		
	NPN	NO				
-	PNP	NO	разомкнут	зелёный		
-	Push- акт. Pull "1"		низкий	зеленыи		

8. Правила хранения и транспортирования

Q 1	Vелория	vnaueuua	в сипансиих	помешениях	(1 m	$^{\circ}\Gamma\Omega$	٦Т 1	5150
O. I.	. У С.ПОВИЯ	хоянения	в склалских	помешениях	(1 116	D I V 7V		2120

- температура:

+5 °C ... +40 °C;

- влажность, не более:

80% (при +25 °С);.

8.2. Условия транспортирования (5 по ГОСТ 15150):

- температура:

минус 50 °C ... +50 °C;

- влажность:

до 98% (при +25 °C);

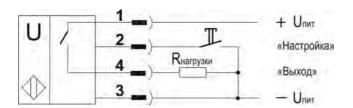
- атмосферное давление:

84,0 ... 106,7 кПа.

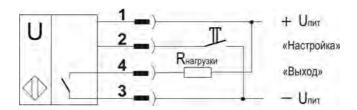
9. Гарантийные обязательства

Гарантийный срок 24 месяца со дня ввода в эксплуатацию, но не более 36 месяцев со дня отгрузки потребителю при условии соблюдения правил транспортирования, хранения, монтажа, эксплуатации и отсутствии механических повреждений.

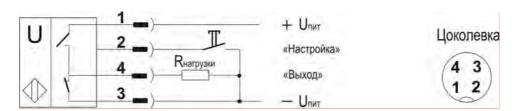
Изделия принимаются на рассмотрение по гарантии при наличии Рекламационного акта, этикетки и (или) паспорта.


10. Свидетельство о приемке

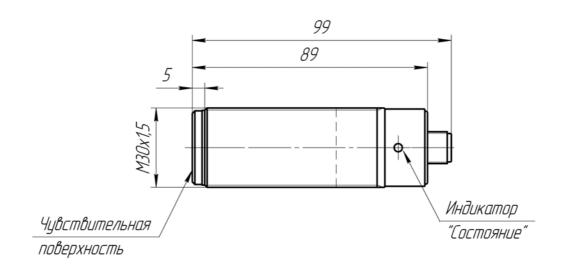
Датчик **USS AC _____-49U-R2000-LZS4** соответствует техническим условиям ВТИЮ.3428.056-2023 ТУ и признан годным к эксплуатации.


Примечание: изготовитель оставляет за собой право внесение несущественных изменений конструкции, не влияющих на эксплуатационные характеристики.

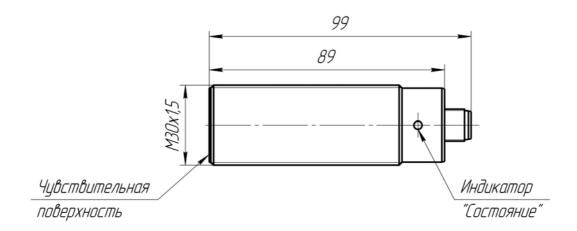
дата выпуска	
Представитель ОТК	


Схемы подключения

Выход РМР


Выход NPN

Выход Push-Pull


Габаритный чертеж

USS AC89P5-49U-R2000-LZS4

Габаритный чертеж

USS AC81B5-49U-R2000-LZS4

По вопросам продаж и поддержки обращайтесь:

Магнитогорск (3519)55-03-13

Москва (495)268-04-70

Алматы (727)345-47-04 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Россия +7(495)268-04-70

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Казахстан +7(727)345-47-04

Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47

Беларусь +375-257-127-884

Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Саранск (8342)22-96-24 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35

Узбекистан +998(71)205-18-59

Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Удэ (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47